趋势一:AI打造个性化教育

清华大学计算机系副教授、博士生导师喻纯在接受《每日经济新闻》记者采访时指出,AI与教育个性化的结合是(AI应用)一个极具潜力的方向。

喻纯认为,教育个性化的需求非常大,“教育本身非常个性化,每个人的兴趣、思维习惯都很不同。需求上来讲,一个孩子需要多位老师去满足这种个性化需求,才能真正将他的所有潜能激发出来。马斯克一直强调,知识不应仅来源于看书,而应在实践中解决问题时获取。这是比较理想的方式,不过,项目导向学习(PBL)非常个性化,除非组建教授团队为每个孩子设计项目,但哪有这么多资源呢?在大学里,一个教授平均要面对几十个学生,根本没时间做这件事。”

在喻纯看来,AI的出现为实现个性化教育提供了新的可能性。AI不仅能够精准传递知识,还能感知和理解学生的情绪变化,从而提供更具针对性的指导。

复旦大学计算机学院副教授、博士生导师郑骁庆也认为,教育行业将最先受益于AI智能服务,尤其是开展个性化教育。“AI作为一个专属教练的身份出现,利用互动优势,可以激发学生的兴趣和学习热情,也能及时提供帮助。”此外,他还认为,AI在教育领域的应用还有助于弥补教育资源分配不均。

“AI能够以更低的成本为每个人打造一个有助于成长的环境。如此一来,每个人或许都能在自己最感兴趣、最擅长的领域发光发热,成为各自领域的‘马斯克’。”喻纯总结道。

趋势二:AI与工业场景结合

人工智能与新时代工业场景结合正推动生产力飞跃。

清华大学计算机系长聘副教授、博士生导师崔鹏在接受《每日经济新闻》记者采访时指出,在当前大模型技术迅速发展的背景下,从资源禀赋的角度讲,制造业的场景是中国发展人工智能的主战场。新质生产力和第四次工业革命的核心都在于利用AI解决严肃行业的生产力问题。“AI技术,应该更多地与工业场景结合,以提升生产力。”

崔鹏进一步阐述道,人类在处理小规模、低维度数据方面较为擅长,但面对大规模、高维度数据时,往往力不从心。而现代工业生产所产生的海量高维度数据,确实超出了人类的理解与调度能力,这正是亟需AI介入的关键所在。

清华大学汽车工程系长聘教授、博士生导师李升波也认为,人工智能与制造业的深度融合已成为推动智能制造蓬勃发展的关键。他向每经记者列举了两个具体应用例子:一个是面向复杂场景的高智能化自主移动机器人;另一个是汽车装配场景下能够完成这些操作的通用机器人。

复旦大学计算机学院副教授、博士生导师郑骁庆则强调了人机协作的重要性。他告诉每经记者,未来的制造业将不再是单纯的机械化,而是智能化与个性化的结合。AI将在辅助决策、生产调度、库存管理等方面发挥关键作用。“大部分任务可能都由AI或者机器学习技术去解决。但同时,人类需要进行监控和管理。”

趋势三:“AI+医疗”逐步渗透

据有关媒体报道,在中国,医疗领域已经成为探索AI应用的重要场所。目前,AI技术在一些医院已初步展开应用,覆盖了分诊导诊、预先问诊、病历生成等场景。

根据医疗信息云平台Athenahealth的一项调查,在美国,超过90%的医生表示“定期”感到倦怠,其中,有83%的受访医生认为AI或能有所帮助,即通过AI简化行政任务,提高诊断准确性并识别患者数据等。

“相比自动化、智能设备等场景,AI在医疗场景的应用更为复杂。”清华大学电子工程系长聘教授、博士生导师吴及在接受《每日经济新闻》记者采访时指出,医疗本质上是人对人的服务,这一过程非常复杂,医学诊疗不仅包含理论和科学,还涉及大量经验,很多时候依赖专家的直觉。因此,“AI在医疗领域的应用难度较大,但会逐步渗透到一些典型场景中。”