如今,Deepfake 已经无孔不入。随着生成式 AI 的普及,网络上的虚假内容呈爆炸式增长。据身份验证平台 Sumsub 统计,2023年至2024年,全球 Deepfake 数量增加了4倍。2024年,Deepfake 占所有欺诈行为的7%,从身份冒充、账户盗用到复杂的社会工程攻击,无不涉及 Deepfake 的身影。

为了有效打击 Deepfake,Meta 公司近日发布了一款工具,可以在 AI 生成的视频片段上添加难以察觉的水印。这款名为 Meta Video Seal 的工具于周四宣布开源,旨在集成到现有软件中。 该工具与 Meta 的其他水印工具 Watermark Anything(今天以宽松许可证重新发布)和 Audio Seal 一起,构成了一套完善的水印解决方案。

 

Meta “亮剑”!开源 AI 视频水印工具 Video Seal,狙击 Deepfake 泛滥

Meta AI 研究科学家皮埃尔·费尔南德斯在接受 TechCrunch 采访时表示:“我们开发 Video Seal 是为了提供更有效的视频水印解决方案,特别是在检测 AI 生成的视频和保护原创性方面。”

Video Seal 并非首个此类技术。DeepMind 的 SynthID 可以为视频添加水印,微软也有自己的视频水印方法。

但费尔南德斯认为,许多现有方法存在不足。

“虽然存在其他水印工具,但它们在视频压缩方面的鲁棒性不足(当通过社交平台共享内容时,视频压缩非常普遍);运行效率不足以大规模应用;不够开放或可重复;或者源自图像水印,而图像水印并非视频的最佳选择,”费尔南德斯说。

除了水印,Video Seal 还可以向视频添加隐藏消息,以便日后揭示视频的来源。Meta 声称,Video Seal 可以抵御常见的编辑操作,如模糊和裁剪,以及常见的压缩算法。

费尔南德斯承认,Video Seal 存在一定的局限性,主要是水印的可感知程度与其对操控的整体抵抗力之间的权衡。他补充说,高强度压缩和重大编辑可能会改变水印或使其无法恢复。

当然,Video Seal 面临的更大问题是,开发人员和行业没有太多理由采用它,特别是那些已经使用专有解决方案的公司。为了解决这个问题,Meta 正在启动一个公共排行榜 Meta Omni Seal Bench,专门用于比较各种水印方法的性能。此外,Meta 还将在今年的 ICLR (国际学习表示会议) 上组织一个关于水印的研讨会。ICLR 是一个重要的 AI 会议。

“我们希望越来越多的 AI 研究人员和开发人员将某种形式的水印整合到他们的工作中,”费尔南德斯说,“我们希望与行业和学术界合作,以更快地推动这一领域的发展。”

Meta 的这一举动,无疑为对抗 Deepfake 泛滥提供了新的思路。开源、开放协作,或许是解决这一棘手问题的有效途径。但 Video Seal 的未来,仍取决于其能否被行业广泛接受和应用,以及其在对抗 Deepfake “魔高一尺” 的能力。